
Robert Pfeffer

Molehills in QGIS

Relief Representation in Molehill Style

Based on Digital Elevation Data

‘Molehills’ are an ancient type of relief depiction commonly found in maps of the 16th to 18th

centuries and, inspired by these, in maps of the fantasy genre. Molehills lend themselves where

a certain antique aesthetic is desired, while geographical accuracy is not a priority. This tutorial

explains how hills prepared as SVG graphics can be automatically placed on the map using

downloaded elevation data with a little extra work in QGIS.1

This is essentially done in six steps:

I. Download of the elevation data,

II. Conversion of the elevation map into a steepness map,

III. Derivation of medium and high mountain areas from the steepness map,

IV. Creating source layers and target layer for the hill points,

V. Generating points for different scales and

VI. Representation of the points by hill graphics.

1 It has been tested in QGIS 3.28 and 3.34. — I did not programme the Python scripts used here on my own, as I am

not familiar with it. ChatGPT was a great help!

2

I. Download of the Elevation Data

First, we need an elevation map for the area in question. For this we can use the OpenTopog-

raphy DEM Downloader plugin and download Copernicus 90 data, for example. As the server

only ever releases limited volumes, the data may have to be downloaded in chunks; in the ex-

ample below, this is done in 5° wide strips:

The many different layers arising from this should be merged into one layer before further

processing. If QGIS reaches its performance limits due to the large amount of data, you may

have to do with several, as few layers as possible. The function for merging can be found in the

menu under Raster —> Miscellaneous —> Merge:

II. Conversion of the Elevation Map into a Steepness Map

Now we have a nice elevation map, which, however, isn’t much use—as we don’t wish to seed a

plain with hills just because it’s a high plain, whereas conversely we want to depict coastal

mountains even if they don’t rise much above zero. So what we need instead is a map showing

not the terrain’s elevation, but its steepness.

3

To do this, we use the GRASS GIS function r.slope.aspect. Under Advanced parameters in the

function’s window, only the tick behind ‘Slope’ must remain, all others can be removed. I have

selected 4 as the multiplier; other values are certainly just as possible.

This results in a map no longer showing how high the terrain is, but how steeply rugged it is.

Note the high plains of Spain and Morocco, for example: they are no longer grey (for being

high), but black (for being plain).

To ease further processing, we

first reduce the graphic to one

twentieth of its hitherto size by

right-clicking on the layer,

followed by —> Export —> Save

as In the window that opens

now, we remove one zero from

each row and column and divide

the remainder by two. Under File

name we select a storage location

and save the graphic as a new

layer (see right).

However, this reduced map is

still too fine-grained for further

use, i.e. vectorisation. We there-

fore apply a Gaussian blur to it by

using the Gaussian filter from

the SAGA tools2; in this example,

a radius of 15 seemed appropri-

ate (see next page).

2 QGIS 3.28 seems to be the last version still supporting SAGA tools out of the box. QGIS 3.34 already requires the

“Processing Saga NextGen Provider” plugin and its being set up under Settings —> Options —> Processing —>

Provider.

4

III. Derivation of Medium and High Mountain Areas from the Steepness Map

Now the areas covered by low and high mountains must be found and extracted as polygons.

To do so, we use the GDAL function Contour polygons, which is genuinely intended for contour

lines. In this example, an interval value of 22 leads to suitable results:

Now we have three polygons on the newly created layer: one extends up to the map’s edges and

covers all relatively flat areas including the seas; we can delete this one. What remains are the

two polygons for medium and high mountain areas. If there is an additional one for the steepest

peaks, we can also delete it if it’s negligibly small, or we can start the procedure again with a

value higher than 22. (If there are even more polygons, the value was too low anyway.)

5

IV. Creating Source Layers and Target Layer for the Hill Points

We allocate the two remaining polygons to two layers, which we call “Mittelgebirge” (‘medium

mountains’) and “Hochgebirge” (‘high mountains’)3. In addition, we create another vector

plane called “Gebirgspunkte” (‘mountain points’), whose geometry consists of points. To this

layer the following fields need to be added, either at the layer’s creation or later in its properties

(except the field “id” being already existent, but useless):

3 As I originally puzzled out this method and wrote these scripts just for myself, most of the terms used are in Ger-

man. You can of course translate them, but will then have to change the functions in their corresponding places,

too.

6

In the following, the aim is to fill the areas of the two polygons with randomly arrayed points,

which in turn are represented by randomly selected SVG graphics. The first two layers serve as

source layers from which the points are generated, and the third one is the target layer in which

they are saved.

This is done using a Python function4, which is provided in two variants—one for the medium

and one for the high mountains (see appendix)—and which essentially does the following:

1. draw a grid over the entire extent of the polygon,

2. randomly place one point in each box of the grid,

3. delete all points that do not end up inside the polygon,

4. delete all points that are too close to the geometry of certain other layers from which

they should keep away (e.g. rivers, coastlines, ...),

5. assign an attribute value of +1 or -1 to all points that are still too close to the right or

left of that geometry so that they can be moved aside later (see below for the sense and

nonsense of this duplication),

6. randomly assign each point a file name from “MH01.svg” to “MH63.svg” (these are the

63 molehill graphics from the prepared set being enclosed) and

7. assign a random scaling factor of 0.9 to 1.1 to each point in order to add some additional

variety to the map design.

The purpose of points 4 and 5 is to prevent the hills from coming too close to the geometry of

certain other layers (which must be entered by name in the function, see appendix). In point 4,

a buffer is drawn around that geometry in order to then delete all points that lie within it. As

our hills are more wide than high, it would actually be nice to have a buffer that is also more

wide than high. However, QGIS doesn’t seem to provide for this. Moreover, if degrees are used

as map units (as is the case here), these are more high than wide in European latitudes, and so

the buffer is exactly the opposite of what it should be. The only solution I could think of is to

check again in a further step 5 which points would still be in the buffer if they were a little

further to the right or to the left (by half a buffer width). A positive or negative attribute value

is then assigned to these points, which later can serve as a reference for a lateral marker offset5.

(This method has one advantage: points that would otherwise be deleted are retained and are

only shifted a little towards the others.)

In the Layer Styling of both source layers (high and medium mountains), we now select Ge-

ometry generator as the fill, Points as the geometry type and Millimetres as the units (in this

example). Next to the expression field, we press the ε button to open the Expression Dialogue.

There we first select the Function Editor, create two new function files called “Random points

high” and “Random points medium” (or any other name) and insert the code of the two func-

tions for high and medium mountains into these files (see appendix). We can do this for both

layers in one, as the Function Editor’s content is available in both layers.

4 The ‘historic nucleus’ of this function is a code published by Rob Jones at https://impermanent.io/2017/05/

05/generative-pseudo-random-polygon-fill-patterns-in-qgis/ (last accessed on 02/02/2014). I’d like to take this

opportunity to credit him for this.
5 See VI.4 below.

https://impermanent.io/2017/05/%2005/generative-pseudo-random-polygon-fill-patterns-in-qgis/
https://impermanent.io/2017/05/%2005/generative-pseudo-random-polygon-fill-patterns-in-qgis/

7

Now we switch to the Expression tab, and now it becomes layer-specific: Here we insert the

expression that will call the function as soon as the layer is made visible. For now, the following

expressions may suffice to create an appealing point pattern at a scale of 1 : 15 000 000:

Zufallspunkte_hoch(0.7, 0.35, 0.35, 33, 42, 0.25, $scale)

Zufallspunkte_mittel(0.53, 0.3, 0.48, 33, 42, 0.25, $scale)

Please note that “Zufallspunkte_hoch” and “Zufallspunkte _mittel” (‘Random points high’ and

‘Random points medium’) relate to the function names defined in the code (see appendix) — so

if you prefer to alter them, you’ll have to alter them there as well. The parameters in the brack-

ets have the following meaning in the upper of the two examples (see also the comments at the

beginning of both functions in the appendix):

– “0.7” and “0.35” are the width and height of the individual grid boxes, measured in map

units, in this case degrees. If you take twice the height for the width, this results in an ap-

proximately square box in European latitudes.

– Another “0.35” determines the degree of random scatter with which the individual point is

placed in the respective box.

– “33” and “42” are arbitrarily selectable values as random seeds for the point scattering and

for the assignment of the SVG file names. As long as this seed remains the same, the random

pattern will also remain the same. So if you don’t like the hill display, you can vary it at these

points without basically changing the points’ density.

– “0.25” determines the width of the buffer that is drawn around the geometry of the other

layers mentioned, i.e. the zone to be kept free of points.

– “$scale” passes the reciprocal value of the current scale (i.e. “15 000 000” for a scale of

1 : 15 000 000). This allows the above expressions to be refined later so that they take into

account the respective scale (see below).

8

V. Generating Points for Different Scales

The points are now created simply by making one of the source layers visible and allowing

QGIS to execute the function. This may take quite a while, and QGIS may well crash! With a

bit of luck, however, the points will then already have been generated and saved.

Although the points are generated from the source layers using the functions stored therein,

they are saved in the “Gebirgspunkte” target layer. The source layers must and should therefore

only be made visible for the purpose of generating points and then immediately made invisible

again.

Both functions are programmed to only generate points if none are present for the current

scale, yet. They are also preset to not generate points for any crooked scale, but only for scales

whose reciprocal value is divisible by 250 000, which applies, for example, to the initial scale

of 1 : 15 000 000 selected here as well as to many of its halves. (This can of course be changed

in the functions if required, see appendix).

The points are thus created for different scales by making the source layer visible in different

scales or by scrolling through different scales when the source layer is visible. This immediately

reveals the problem that the distances passed as parameters are absolute, so that the grid boxes

and thus also the points have the same geographical distance in each scale. If you want the

points to be twice as dense at double the scale so that the visual distance remains the same,

only half the value may be passed as a parameter at double the scale. This is achieved by in-

serting a fraction using “$scale” in the numerator instead of an absolute value. (For precisely

this purpose, “$scale” is passed to the function as the last parameter). So if, for example, a

horizontal distance of 0.7 seemed appropriate at a scale of 1 : 15 000 000—like this:

Zufallspunkte_hoch(0.7, …,

then you can replace this 0.7 with a fraction that gives the same result as 0.7 on the scale men-

tioned—namely 15 000 000 / 21 428 571.4—and which, using “$scale” instead of “15 000 000”

and being rounded a little, reads like this:

Zufallspunkte_hoch($scale/21400000, ….

If the scale is doubled, “$scale” is then only half as large, which would halve the geographical

distance so that visual distance remains the same. If you now want the visual distance not to

exactly remain the same at double the scale, but to become a little bit larger again, you can add

a small summand to the parameter, which has the exact opposite effect, e.g:

Zufallspunkte_hoch($scale/21400000+1200000/$scale, ….

You can proceed in the same way with all other parameters that denote distances. I ended up

with the following expressions:

Zufallspunkte_hoch($scale/25000000+1200000/$scale,

$scale/50000000+600000/$scale, $scale/70000000+2000000/$scale, 33, 42,

$scale/70000000+500000/$scale, $scale)

Zufallspunkte_mittel($scale/33000000+1200000/$scale,

$scale/65000000+1000000/$scale, $scale/60000000+3500000/$scale, 33, 42,

$scale/70000000+500000/$scale, $scale)

9

VI. Representation of the Points by Hill Graphics

All generated points are now registered in the attribute table of the ‘Gebirgspunkte’ layer,

where they differ in their respective attributes: The “SVG” column specifies which of the 63

molehill files are to be used. The “Kategorie” column shows whether the point is for high or

medium mountain ranges. The “Massstab” (‘Scale’) column tells you for which scale the point

was entered—the point should only be visible for this scale later on. “Versatz” (‘Offset’) indi-

cates a possible offset to the east or west for some of the points: For example, the points labelled

“-1” above are too close to the west bank of a river and should therefore be shifted still a little

further to the west. Finally, the last column provides a scaling factor which is “0.5” for points

that are ‘sandwiched’ between rivers or coastlines (see appendix), “0.8” for points to be dis-

placed from rivers or coastlines (see “Versatz” column) and a random value of 0.9 to 1.1 for all

other points (in tenths of a millimetre increments). If necessary, this can be changed in the

function code (see appendix).

1. Scale-Dependent Visibility

of the Individual Points

So let's first make sure that each

point is only displayed for the scale

it has been created for or, more

precisely, for a range from this

scale to the next. Rule-based

symbology is ideal for this:

In our example, points were generated for the four scales of 1 : 3 750 000, 1 : 7 500 000,

1 : 15 000 000 and 1 : 30 000

000. Accordingly, we define

four display rules for the

ranges from one scale to the

next, i.e. initially from an

arbitrary lower limit of 50 001

to the scale-reciprocal of

3 750 000, then from 3 750

000 to 7 500 000 and so on.

10

For each of these rules, an expression is entered under Filter that regulates the visibility of the

points. For the rule “bis 1:3750000” (‘up to 1:3750000’), for example, it reads:

@map_scale > 50001 AND @map_scale <= 3750000 AND "Massstab" = 3750000

This means: If the current scale’s reciprocal value is greater than 50001 and at the same time

less than or equal to 3750000, and if the column “Massstab” (‘Scale’) shows a value of

“3750000” for the respective point, then this point will be displayed; if not, then not.

The rules for the other scale areas are to be formulated accordingly.

2. Assigning the SVG Files

If we double-click on the individual

rule and then click again on SVG

Marker, we will find a field at the

bottom where a path to an SVG file

can be entered. However, as we don’t

want to use one and the same hill

graphic for all of the points, but ra-

ther assign each point the graphic

that is specified for it in the attribute

table, we must instead press the ε

button to the right of the field in or-

der to enter an expression such as

the following:

'd:/Kartografie/Signaturen/

Maulwurfshügel/' || "SVG"

It first returns the path to the SVG

file, followed by what is shown in the

“SVG” column, i.e. the file name, and

hence describes a complete path

such as “D:\Cartography\Signa-

tures\Molehills\MH31.svg”.

3. Scaling the Hill Graphics Depending on the Scale—and the Latitude

After double-clicking on one of the rules and single-clicking on SVG marker, we find below the

fields to set the size of the hill graphics. Here we should first set a suitable hill size for the

nominal scale of the respective rule. (We should therefore make sure that the map currently is

at this scale instead of somewhere between this scale and the next). The specified size refers to

the invisible circle that lies in the background of each hill graphic.

Once we have found an appealing map appearance, we should ensure that it is maintained even

when the map is scaled up into the area between this and the next scale. The hills should also

be scaled up in order to maintain their relative size in proportion to the rest of the map. We

can achieve this by klicking the ε button and choosing Edit to open the Expression Dialogue,

where the following expression can be entered:

11

CASE

 WHEN "Kategorie" = 'hoch' THEN 8 * "Skalierung" * 7500000/$scale * (-0.021 * $y +2.1)

 WHEN "Kategorie" = 'mittel' THEN 7.5* "Skalierung" * 7500000/$scale * (-0.021 * $y +2.1)

 ELSE 1

END

Its first lines mean: In the Case when the category is “high”, then the point has a size of 8 mm

being scaled by the factor from the “Skalierung” column (so that the hill pattern is more var-

ied), then by a scale-dependent factor, which is exactly 1 in the nominal scale, but increases

along with the scale, and finally by the bracketed factor to the rear, which takes into account

the y-value on the map, i.e. the latitude. Since the coordinate reference systems of these layers

have degrees as map units, the distance between the hills is also given in degrees—being a unit

which becomes the longer the closer you get to the equator. Thus the map appearance becomes

somewhat more attractive if the hillsize increases to the same extent as do the degrees south-

wards. In the coordinate reference system EPSG:3034 used here, with its conical Lambert pro-

jection, the meridians diverge linearly to the south, which makes it easy to find a formula for

an equally linear enlargement of the hills (namely “-0.021 * $y +2.1”. The absolute member

was chosen so that the hills have their original size at about 50 degrees north and from there

become smaller northwards and larger southwards.)

The third line is the same for the medium mountains; they are given a basic size of 7.5 mm.

The default value of 1 in the penultimate line is only relevant if nothing is entered under “Kat-

egorie” (i.e. never).

4. Distancing the Hills from Rivers, Coastlines, etc.

The Offset section can also be found in

the place already mentioned several

times, where instead of a fixed offset for

the hill graphics, you can also set one that is based on the entries in the “Versatz” (‘Offset’)

attribute column. To do this, we press the ε button again, go to Edit and enter into the

expression editor for example:

to_string("Versatz"*0.7) || ',' || 0

This expression returns an offset in the format “x,y”. The entry from the “Versatz” (‘Offset’)

column is taken as the x-value and is multiplied by 0.7 (a factor that can be freely selected).

The result is converted into a string in order to be digestible by QGIS. The concatenation con-

tinues with a comma as separator and a zero as y-value.

5. Adjusting the Drawing Order for the Current Coordinate Reference System

To give the hill display a perspective impression, the two functions are already formulated such

that the hills are sorted by their y-value and that the more southerly hills are only drawn after

the more northerly ones, having the front hills cover the rear ones and not the other way round

(see appendix). This makes the map already look reasonably neat. However, the y-value used

for this is the geographic north/south value, which leads to inadequate results where north is

not (or not quite) at the top of the map: namely in the eastern and western peripheral areas,

where the meridians run diagonally towards the North Pole, and even more so in maps that

are not north-orientated at all, but are, for example, east-oriented (as was not uncommon in

the olden days).

12

To get a really neat map display, we

need to ensure that the hills are really

rendered from the top to the bottom of

the maß. We can do this by ticking the

Control feature rendering order box

at the bottom of the Layer Styling and

clicking the button to the right of it.

The below window will now open, in

which we can enter the following

expression:

y(transform($geometry, 'EPSG:4326',

'EPSG:3024'))

It causes the points to be drawn in the

order of their y-value, but only after

the coordinates used in the layer

(EPSG:4326) have been transformed

into the coordinates on the screen

(EPSG:3024).

6. Setting the Colour and Line Width of the Hills

The final step is to set the colours and line widths of the hill graphics. These are not fixed in the

SVG files, but are left open as variables (parameters) whose value can be determined by QGIS

(so-called ‘parameterised’ SVG files). This means that we can adapt the appearance of the hill

graphics in QGIS to the requirements of our map.

In order to activate the necessary fields hitherto greyed out in QGIS, we have to pretend we

still want to use one and the same graphic for all of the hills and enter the path to a specific hill

file into the field marked red on page 10 above:

(Which file we choose doesn’t matter, as it has no effect, but is still subject to data-defined

override.)

13

Colours and line widths can now be set up using the following fields:

If you click on the Fill colour field, a more detailed settings panel opens up, including the col-

our’s opacity. It should be noted here that QGIS thinks it is setting the opacity of the hill colour,

whereas in reality this is affecting the black shadow! This misappropriation was necessary be-

cause QGIS’ use of parameterised SVG files is still somewhat deficient at present.

